Synthetics Cross-Correlation Functions

Functions to generate synthetic cross-correlations from secondary microseisms sources.

It contains fourteen functions:

  • apply_delay_f_domain(s,d): Apply a delay d to the input signal s using Fourier domain.

  • get_synthetic_info(path_file_axisem, comp): Get synthetic info from a specified h5 file and return fe, time, and N.

  • open_axisem(dist, path_file_axisem, comp): Reads an AxiSEM .h5 archive in a 1D model given its path and a distance.

  • taper_axisem_archive(time, distance, archive_name, umin, umax): Taper an AxiSEM .h5 archive in a 1D model given its path and a distance and minimum and maximum Rayleigh wave velocity.

  • taper_axisem_archive_body_waves(time, distance, archive_name, phase1, phase2, model, **kwargs): Taper an AxiSEM .h5 archive around two body wave phases in a 1D model given its path and a distance.

  • create_spectrum_archive(time, distance, tapered_archive, h5_name_spectrum): Create a Green's function archive in frequency domain from an AxiSEM archive.

  • open_archive(h5_name): Open a Green's function archive in frequency domain.

  • open_spectrum_axisem(path_file_axisem, comp): Reads an AxiSEM .h5 archive in a 1D model given its path and a distance, and returns sampling frequency, time vector and trace.

  • create_date_vect(dates): Create a date vector from a list of dates.

  • open_model(path_file_WW3, date_vect, N, fe, lon_slice, lat_slice): Open WW3 model for ambient noise sources at a specific time and date.

  • distance_to_station(lon, lat, lon_s, lat_s, radius_earth): Computes the distance of every point of the model to station of coordinates (lonS, latS).

  • matrix_GF(spectrum_axi, lon, lat, N, distance_s, conjugate): Generates a synthetic seismogram (Green's Functions) matrix to a specific station in frequency domain using the given lon, lat, N, path_file_axisem, distance_s, and optional conjugate flag.

  • compute_model_chunk(lon_inf, lon_sup, lat_inf, lat_sup, N, fe, date_vect, spectrum_axi, file_model, lon_staA, lat_staA, lon_staB, lat_staB): Compute correlation function in frequency domain between stations A and B for a chunk of the www3 model source.

  • ccf_computation(coords_staA, coords_staB, path_model, date_vect, spectrum_axi, fe, N, extent, comp): Compute the cross-correlation function between two seismic stations.

  • amplitude_modulator(lon, lat, N, lon_s, lat_s, comp): amplitude modulation depending on the component.

  • compute_model_chunk_autocorr(lon_inf, lon_sup, lat_inf, lat_sup, N, fe, spectrum_axi_R, spectrum_axi_Z, file_model, lon_sta, lat_sta, comp): Compute auto-correlation cross-component function in frequency domain for a chunk of the www3 model source.

  • ccf_computation_autocorr(coords_sta,path_model, date_vect, spectrum_axi_R, spectrum_axi_Z, fe, N, extent, comp): Compute auto-correlation function between radial and vertical components for a single station.

amplitude_modulator(lon, lat, N, lon_s, lat_s, comp='E')

Modulates the source PSD amplitude depending on the source point backazimuth and horizontal component

Parameters:
  • lon (ndarray) –

    Longitude vector

  • lat (ndarray) –

    Latitude vector

  • N (int) –

    Number of points in frequency domain

  • lon_s (float) –

    Source longitude

  • lat_s (float) –

    Source latitude

  • comp (str, default: 'E' ) –

    Horizontal component to compute amplification for, default 'E'.

Source code in wmsan/synthetics.py
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
def amplitude_modulator(lon, lat, N, lon_s, lat_s, comp = 'E'):
    """Modulates the source PSD amplitude depending on the source point backazimuth and horizontal component  

    Args:
        lon (np.ndarray): Longitude vector
        lat (np.ndarray): Latitude vector
        N (int): Number of points in frequency domain
        lon_s (float): Source longitude 
        lat_s (float): Source latitude
        comp (str): Horizontal component to compute amplification for, default 'E'.
    """
    geoid = Geod(ellps="WGS84")  # set reference ellipsoid
    (lat_grid, lon_grid) = np.meshgrid(lat, lon)  # grid used

    lonSTA = np.ones(lon_grid.shape)*lon_s
    latSTA = np.ones(lat_grid.shape)*lat_s
    (_, baz, _) = geoid.inv(lon_grid, lat_grid, lonSTA, latSTA, radians=False)

    if comp == 'E':
        return np.repeat(-np.sin(baz)[:,:, np.newaxis], N//2, axis=2)
    if comp == 'N':
        return np.repeat(np.cos(baz)[:,:, np.newaxis], N//2, axis=2)
    if comp == 'Z':
        return np.ones(lon_grid.shape[0], lon_grid.shape[1], N//2)

apply_delay_f_domain(s, d=0.0)

Apply a delay d to the input signal s using Fourier domain.

Parameters:
  • s (ndarray) –

    The input signal to apply delay.

  • d (float, default: 0.0 ) –

    The delay to apply to the input signal.

Returns:
  • s_delayed( ndarray ) –

    The delayed input signal.

Source code in wmsan/synthetics.py
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def apply_delay_f_domain(s,d=0.):
    """Apply a delay d to the input signal s using Fourier domain.

    Args:
        s (numpy.ndarray): The input signal to apply delay.
        d (float, optional): The delay to apply to the input signal.

    Returns:    
        s_delayed (numpy.ndarray): The delayed input signal.
    """

    ## apply a delay d to the input signal s
    d_phase = 2*np.pi*d*np.arange(len(s))/(len(s))  # phase associated to d
    d_phase[int(np.round(len(d_phase)/2))::]-=2*np.pi*d  # for the hermitian symmetry of the fft
    return np.real(np.fft.ifft(np.fft.fft(s)*np.exp(-1j*d_phase)))

ccf_computation(coords_staA, coords_staB, path_model, date_vect, spectrum_axi, fe=4.0, N=14400, extent=[-180, 181, -80, 81])

Computes the cross-correlation function between two seismic stations. It takes the coordinates of the stations, the path to the AxiSEM archive, the path to the model, a vector of dates, a normalization factor, and a component parameter. It returns the computed cross-correlation function and the corresponding time array.

Parameters:
  • coords_staA (tuple) –

    Coordinates of station A (longitude, latitude).

  • coords_staB (tuple) –

    Coordinates of station B (longitude, latitude).

  • path_model (str) –

    Path to the WW3 PSD model.

  • date_vect (list) –

    Vector of dates (year, month, day, hour).

  • spectrum_axi (array) –

    AxiSEM spectrum.

  • fe (float, default: 4.0 ) –

    Sampling frequency.

  • N (int, default: 14400 ) –

    Number of points.

  • extent (list, default: [-180, 181, -80, 81] ) –

    Longitude and latitude slices.

Returns:
  • corr( DataArray ) –

    Synthetic correlation in time domain.

  • time_corr( ndarray ) –

    Time array.

Source code in wmsan/synthetics.py
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
def ccf_computation(coords_staA, coords_staB, path_model, date_vect, spectrum_axi, fe=4., N=14400, extent = [-180, 181, -80, 81]):
    """Computes the cross-correlation function between two seismic stations.
    It takes the coordinates of the stations, the path to the AxiSEM archive, the path to the model, 
    a vector of dates, a normalization factor, and a component parameter. 
    It returns the computed cross-correlation function and the corresponding time array.

    Args:
        coords_staA (tuple): Coordinates of station A (longitude, latitude).
        coords_staB (tuple): Coordinates of station B (longitude, latitude).
        path_model (str): Path to the WW3 PSD model.
        date_vect (list): Vector of dates (year, month, day, hour).
        spectrum_axi (array): AxiSEM spectrum.
        fe (float, optional): Sampling frequency.
        N (int, optional): Number of points.
        extent (list, optional): Longitude and latitude slices.

    Returns:
        corr (xarray.DataArray): Synthetic correlation in time domain.
        time_corr (numpy.ndarray): Time array.
    """

    ## Coordinates of stations
    lon_staA = coords_staA[0]
    lat_staA = coords_staA[1]

    lon_staB = coords_staB[0]
    lat_staB = coords_staB[1]

    if np.abs(lat_staA) > 90:
        print("Latitude A not correct, absolute value > 90")
        return
    if np.abs(lat_staB) > 90:
        print("Latitude B not correct, absolute value > 90")
        return
    ## Open WW3 PSD
    YEAR = date_vect[0]
    MONTH = date_vect[1]
    DAY = date_vect[2]
    HOUR = date_vect[3]

    file_model = path_model + 'F_%d%02d%02d%02d.nc'%(YEAR, MONTH, DAY, HOUR)

    ## Define longitude and latitude slices
    lon_inf, lon_sup = extent[0], extent[1]
    lat_inf, lat_sup = extent[2], extent[3]

    corr_f = np.zeros((N)).astype(complex)
    res = compute_model_chunk(lon_inf, lon_sup, lat_inf, lat_sup, N, fe,spectrum_axi, file_model, lon_staA, lat_staA, lon_staB, lat_staB)

    corr_f[0:N//2] = res
    if N%2 == 0:
        corr_f[N//2::] = np.flip(np.conjugate(corr_f[0:N//2])).astype(complex)
    else:
        corr_f[N//2+1::] = np.flip(np.conjugate(corr_f[0:N//2])).astype(complex)
    ## Correlation in Time Domain
    corr = ifft(corr_f.data).real
    corr = np.fft.fftshift(corr)
    corr *= 1e-40
    time_corr = np.arange(-N//2, N//2)*1/fe

    corr = xr.DataArray(corr, dims=['time'], coords={'time': time_corr}, name='synthetic correlation')
    del corr_f    
    return corr, time_corr

ccf_computation_autocorr(coords_sta, path_model, date_vect, spectrum_axi_R, spectrum_axi_Z, fe=4.0, N=14400, extent=[-180, 181, -80, 81], comp='ZE')

Computes the auto-correlation function for a single station. It takes the coordinates of the station, the path to the AxiSEM archive, the path to the model, a vector of dates, a normalization factor, and a component parameter. It returns the computed auto-correlation function and the corresponding time array.

Parameters:
  • coords_sta (tuple) –

    Coordinates of station (longitude, latitude).

  • path_model (str) –

    Path to the WW3 PSD model.

  • date_vect (list) –

    Vector of dates (year, month, day, hour).

  • spectrum_axi (array) –

    AxiSEM spectrum.

  • fe (float, default: 4.0 ) –

    Sampling frequency.

  • N (int, default: 14400 ) –

    Number of points.

  • extent (list, default: [-180, 181, -80, 81] ) –

    Longitude and latitude slices.

Returns:
  • corr( DataArray ) –

    Synthetic correlation in time domain.

  • time_corr( ndarray ) –

    Time array.

Source code in wmsan/synthetics.py
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
def ccf_computation_autocorr(coords_sta,path_model, date_vect, spectrum_axi_R, spectrum_axi_Z, fe=4., N=14400, extent = [-180, 181, -80, 81], comp='ZE'):
    """Computes the auto-correlation function for a single station.
    It takes the coordinates of the station, the path to the AxiSEM archive, the path to the model, 
    a vector of dates, a normalization factor, and a component parameter. 
    It returns the computed auto-correlation function and the corresponding time array.

    Args:
        coords_sta (tuple): Coordinates of station (longitude, latitude).
        path_model (str): Path to the WW3 PSD model.
        date_vect (list): Vector of dates (year, month, day, hour).
        spectrum_axi (array): AxiSEM spectrum.
        fe (float, optional): Sampling frequency.
        N (int, optional): Number of points.
        extent (list, optional): Longitude and latitude slices.

    Returns:
        corr (xarray.DataArray): Synthetic correlation in time domain.
        time_corr (numpy.ndarray): Time array.
    """

    ## Coordinates of station
    lon_sta = coords_sta[0]
    lat_sta = coords_sta[1]

    ## Open WW3 PSD
    YEAR = date_vect[0]
    MONTH = date_vect[1]
    DAY = date_vect[2]
    HOUR = date_vect[3]

    file_model = path_model + 'F_%d%02d%02d%02d.nc'%(YEAR, MONTH, DAY, HOUR)

    ## Define longitude and latitude slices
    lon_inf, lon_sup = extent[0], extent[1]
    lat_inf, lat_sup = extent[2], extent[3]

    corr_f = np.zeros((N)).astype(complex)
    res = compute_model_chunk_autocorr(lon_inf, lon_sup, lat_inf, lat_sup, N, fe, spectrum_axi_R, spectrum_axi_Z, file_model, lon_sta, lat_sta, comp=comp)

    corr_f[0:N//2] = res
    if N%2 == 0:
        corr_f[N//2::] = np.flip(np.conjugate(corr_f[0:N//2])).astype(complex)
    else:
        corr_f[N//2+1::] = np.flip(np.conjugate(corr_f[0:N//2])).astype(complex)
    ## Correlation in Time Domain
    corr = ifft(corr_f.data).real
    corr = np.fft.fftshift(corr)
    corr *= 1e-40
    time_corr = np.arange(-N//2, N//2)*1/fe

    corr = xr.DataArray(corr, dims=['time'], coords={'time': time_corr}, name='synthetic correlation')
    del corr_f    
    return corr, time_corr

compute_model_chunk(lon_inf, lon_sup, lat_inf, lat_sup, N, fe, spectrum_axi, file_model, lon_staA, lat_staA, lon_staB, lat_staB)

Computes correlation function between stations A and B for a chunk of the www3 model source.

Parameters:
  • lon_inf (float) –

    Lower longitude bound.

  • lon_sup (float) –

    Upper longitude bound.

  • lat_inf (float) –

    Lower latitude bound.

  • lat_sup (float) –

    Upper latitude bound.

  • N (int) –

    Number of points.

  • fe (float) –

    Sampling frequency.

  • date_vect (array) –

    Vector of dates.

  • spectrum_axi (ndarray) –

    Axisem archive spectrum.

  • file_model (str) –

    WW3 PSD file.

  • lon_staA (float) –

    Longitude of station A.

  • lat_staA (float) –

    Latitude of station A.

  • lon_staB (float) –

    Longitude of station B.

  • lat_staB (float) –

    Latitude of station B.

  • comp (str) –

    Component.

Returns:
  • corr_f( ndarray ) –

    Computed correlation function as a single precision complex array.

Source code in wmsan/synthetics.py
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
def compute_model_chunk(lon_inf, lon_sup, lat_inf, lat_sup, N, fe, spectrum_axi, file_model, lon_staA, lat_staA, lon_staB, lat_staB):
    """Computes correlation function between stations A and B for a chunk of the www3 model source.   

    Args:
        lon_inf (float): Lower longitude bound.
        lon_sup (float): Upper longitude bound.
        lat_inf (float): Lower latitude bound.
        lat_sup (float): Upper latitude bound.
        N (int): Number of points.
        fe (float): Sampling frequency.
        date_vect (array): Vector of dates.
        spectrum_axi (np.ndarray): Axisem archive spectrum.
        file_model (str): WW3 PSD file.
        lon_staA (float): Longitude of station A.
        lat_staA (float): Latitude of station A.
        lon_staB (float): Longitude of station B.
        lat_staB (float): Latitude of station B.
        comp (str): Component.

    Returns:
        corr_f (np.ndarray): Computed correlation function as a single precision complex array.
    """
    ## Open model
    psd_model = open_model(path_file_WW3=file_model, N=N, fe=fe, lon_slice=slice(lon_inf, lon_sup), lat_slice=slice(lat_inf, lat_sup))
    psd_model.data = psd_model.data.astype(complex)
    lon = psd_model.longitude
    lat = psd_model.latitude

    ## Distances
    distance_staA = distance_to_station(lon, lat, lon_s = lon_staA, lat_s = lat_staA)
    distance_staB = distance_to_station(lon, lat, lon_s = lon_staB, lat_s = lat_staB)

    ## Green's Functions spectrum
    psd_model.values *= matrix_GF(spectrum_axi, lon=lon, lat=lat, N=N, distance_s=distance_staA, conjugate=True).astype(complex)

    ## Green's Functions spectrum
    psd_model.values *= matrix_GF(spectrum_axi, lon=lon, lat=lat, N=N, distance_s=distance_staB, conjugate=False).astype(complex)

    del distance_staA, distance_staB, lon, lat 
    ## Sum along coordinates latitude and longitude
    return psd_model.sum(dim=['longitude', 'latitude']).data.astype(complex)

compute_model_chunk_autocorr(lon_inf, lon_sup, lat_inf, lat_sup, N, fe, spectrum_axi_R, spectrum_axi_Z, file_model, lon_sta, lat_sta, comp='ZE')

Computes auto-correlation function for a given station coordinates for a chunk of the www3 model source.

Parameters:
  • lon_inf (float) –

    Lower longitude bound.

  • lon_sup (float) –

    Upper longitude bound.

  • lat_inf (float) –

    Lower latitude bound.

  • lat_sup (float) –

    Upper latitude bound.

  • N (int) –

    Number of points.

  • fe (float) –

    Sampling frequency.

  • date_vect (array) –

    Vector of dates.

  • spectrum_axi_R (ndarray) –

    Axisem archive spectrum for radial component.

  • spectrum_axi_Z (ndarray) –

    Axisem archive spectrum for vertical component.

  • file_model (str) –

    WW3 PSD file.

  • lon_sta (float) –

    Longitude of station.

  • lat_sta (float) –

    Latitude of station.

Returns:
  • corr_f( ndarray ) –

    Computed correlation function as a single precision complex array.

Source code in wmsan/synthetics.py
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
def compute_model_chunk_autocorr(lon_inf, lon_sup, lat_inf, lat_sup, N, fe, spectrum_axi_R, spectrum_axi_Z, file_model, lon_sta, lat_sta, comp='ZE'):
    """Computes auto-correlation function for a given station coordinates for a chunk of the www3 model source.   

    Args:
        lon_inf (float): Lower longitude bound.
        lon_sup (float): Upper longitude bound.
        lat_inf (float): Lower latitude bound.
        lat_sup (float): Upper latitude bound.
        N (int): Number of points.
        fe (float): Sampling frequency.
        date_vect (array): Vector of dates.
        spectrum_axi_R (np.ndarray): Axisem archive spectrum for radial component.
        spectrum_axi_Z (np.ndarray): Axisem archive spectrum for vertical component.
        file_model (str): WW3 PSD file.
        lon_sta (float): Longitude of station.
        lat_sta (float): Latitude of station.

    Returns:
        corr_f (np.ndarray): Computed correlation function as a single precision complex array.
    """
    ## Open model
    psd_model = open_model(path_file_WW3=file_model, N=N, fe=fe, lon_slice=slice(lon_inf, lon_sup), lat_slice=slice(lat_inf, lat_sup))
    psd_model.data = psd_model.data.astype(complex)
    lon = psd_model.longitude
    lat = psd_model.latitude

    ## Distances
    distance_sta = distance_to_station(lon, lat, lon_s = lon_sta, lat_s = lat_sta)

    ## Amplitude modulator
    ## Green's Functions spectrum
    if comp[0] == 'Z':
        ## Green's Functions spectrum for vertical component
        psd_model.values *= matrix_GF(spectrum_axi_Z, lon=lon, lat=lat, N=N, distance_s=distance_sta, conjugate=True).astype(complex)
    else:
        ## Green's Functions spectrum for radial component
        psd_model.values *= matrix_GF(spectrum_axi_R, lon=lon, lat=lat, N=N, distance_s=distance_sta, conjugate=True).astype(complex)
        psd_model.values *= amplitude_modulator(lon, lat, lon_s = lon_sta, lat_s = lat_sta, N=N, comp = comp[0]).astype(complex)

    if comp[1] == 'Z':
        ## Green's Functions spectrum for vertical component
        psd_model.values *= matrix_GF(spectrum_axi_Z, lon=lon, lat=lat, N=N, distance_s=distance_sta, conjugate=False).astype(complex)
    else:
        ## Green's Functions spectrum for radial component
        psd_model.values *= matrix_GF(spectrum_axi_R, lon=lon, lat=lat, N=N, distance_s=distance_sta, conjugate=False).astype(complex)
        psd_model.values *= amplitude_modulator(lon, lat, lon_s = lon_sta, lat_s = lat_sta, N=N, comp = comp[1]).astype(complex)

    del distance_sta, lon, lat 
    ## Sum along coordinates latitude and longitude
    return psd_model.sum(dim=['longitude', 'latitude']).data.astype(complex)

create_date_vect(dates)

Creates a date vector from a list of dates.

Parameters:
  • dates (list) –

    A list of datetime objects representing the dates.

Returns:
  • date_vect( ndarray ) –

    A 2D numpy array where each row represents a date and contains the year, month, day, and hour.

Source code in wmsan/synthetics.py
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
def create_date_vect(dates):
    """Creates a date vector from a list of dates.

    Args:
        dates (list): A list of datetime objects representing the dates.

    Returns:
        date_vect (numpy.ndarray): A 2D numpy array where each row represents a date and contains the year, month, day, and hour.
    """
    date_vect = np.zeros((len(dates), 4))
    for i in range(len(dates)):
        date = dates[i]
        year, month, day, hour = date.year, date.month, date.day, date.hour
        date_vect[i] = [year, month, day, hour]
    return date_vect

create_spectrum_archive(time, distance, tapered_archive, h5_name_spectrum='spectrum_archive_tapered.h5')

Create a Green's function archive in frequency domain from an AxiSEM archive. This function creates a spectrum archive by computing the Fourier transform of the input archive for each distance value. The resulting spectrum is saved as an HDF5 file with the specified name. The HDF5 file contains three datasets:

'SPECTRUM': The spectrum data.

'frequency': The frequency values.

'distance': The distance values.

Parameters:
  • time (ndarray) –

    An array of time values.

  • distance (ndarray) –

    An array of distance values.

  • tapered_archive (ndarray) –

    The Green's Function archive in time domain file path.

  • h5_name_spectrum (str, default: 'spectrum_archive_tapered.h5' ) –

    The name of the output HDF5 file.

Returns:
  • None( NoneType ) –

    The function saves the spectrum archive as an HDF5 file.

Source code in wmsan/synthetics.py
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
def create_spectrum_archive(time, distance, tapered_archive, h5_name_spectrum = 'spectrum_archive_tapered.h5'):
    """Create a Green's function archive in frequency domain from an AxiSEM archive.
    This function creates a spectrum archive by computing the Fourier transform of the input archive for each distance value.
    The resulting spectrum is saved as an HDF5 file with the specified name. The HDF5 file contains three datasets:

    'SPECTRUM': The spectrum data.

    'frequency': The frequency values.

    'distance': The distance values.

    Args:
        time (numpy.ndarray): An array of time values.
        distance (numpy.ndarray): An array of distance values.
        tapered_archive (numpy.ndarray): The Green's Function archive in time domain file path.
        h5_name_spectrum (str, optional): The name of the output HDF5 file.

    Returns:
        None (NoneType): The function saves the spectrum archive as an HDF5 file.
    """
    dt = time[1] - time[0]
    fe = 1/dt
    N = len(time)
    freq = fftfreq(N, 1/fe)
    spectrum = np.zeros((len(distance), len(freq))).astype(complex)
    for dist in tqdm(distance):
        index = np.argmin(np.abs(distance - dist))
        W = tapered_archive[index, :]
        spectrum[index, :] = fft(W)

    # Save as h5
    h5_file = h5py.File(h5_name_spectrum, 'w')
    h5_file.create_dataset('SPECTRUM', data=spectrum)
    h5_file.create_dataset('frequency', data=freq)
    h5_file.create_dataset('distance', data=distance)
    h5_file.close()

distance_to_station(lon, lat, lon_s=0, lat_s=90, radius_earth=6371000.0)

Computes the distance of every point of the model to station of coordinates (lonS, latS)

Parameters:
  • lon (ndarray) –

    longitudes of the grid

  • lat (ndarray) –

    latitude of the grid

  • lon_s (float, default: 0 ) –

    station longitude

  • lat_s (float, default: 90 ) –

    station latitude

  • radius_earth (float, default: 6371000.0 ) –

    the radius of the Earth

Returns:
  • distanceS( ndarray ) –

    distance to station S matrix of dimensions dim(lon) x dim(lat)

Source code in wmsan/synthetics.py
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
def distance_to_station(lon, lat, lon_s=0, lat_s=90, radius_earth=6371e3):
    """Computes the distance of every point of the model to station of coordinates (lonS, latS)

    Args:
        lon (numpy.ndarray): longitudes of the grid
        lat (numpy.ndarray): latitude of the grid
        lon_s (float): station longitude 
        lat_s (float): station latitude
        radius_earth (float): the radius of the Earth

    Returns:
        distanceS (np.ndarray): distance to station S matrix of dimensions dim(lon) x dim(lat) 
    """
    geoid = Geod(ellps="WGS84")  # set reference ellipsoid
    (lat_grid, lon_grid) = np.meshgrid(lat, lon)  # grid used

    lonSTA = np.ones(lon_grid.shape)*lon_s
    latSTA = np.ones(lat_grid.shape)*lat_s
    (_, _, distance_in_metersS) = geoid.inv(lon_grid, lat_grid, lonSTA, latSTA, radians=False)
    distanceS = 180.0*distance_in_metersS/(radius_earth*np.pi)
    distanceS = xr.DataArray(distanceS, coords={'longitude': lon, 'latitude': lat}, name = 'distance', attrs={'units': '°'})
    return distanceS

get_synthetic_info(path_file_axisem='../../data/NOISE_vertforce_dirac_0-ak135f_1.s_3600s.h5', comp='Z')

Function to get synthetic info from a specified h5 file and return fe, time, and N.

Parameters:
  • path_file_axisem (str, default: '../../data/NOISE_vertforce_dirac_0-ak135f_1.s_3600s.h5' ) –

    path of axisem .h5 archive.

  • comp (str, default: 'Z' ) –

    component.

Returns:
  • fe( float ) –

    sampling frequency

  • time( ndarray ) –

    time vector

  • N( int ) –

    number of points

Source code in wmsan/synthetics.py
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
def get_synthetic_info(path_file_axisem='../../data/NOISE_vertforce_dirac_0-ak135f_1.s_3600s.h5', comp='Z'):
    """Function to get synthetic info from a specified h5 file and return fe, time, and N.

    Args:
        path_file_axisem (str, optional): path of axisem .h5 archive.
        comp (str, optional): component.

    Returns:
        fe (float): sampling frequency
        time (numpy.ndarray): time vector
        N (int): number of points
    """
    try:
        h5_file = h5py.File(path_file_axisem)
        fe = h5_file['_metadata']['fe'][()]
        dist = 0.1
        trace = h5_file['L']['SYNTH%03d.00'%(dist*10)][comp][:].astype(np.single)
    except:
        print('File not found', path_file_axisem, "Download the file from: https://zenodo.org/records/11126562 \n", "Save in ../data/")
        return None, None, None  
    time = np.arange(0, len(trace)*1/fe, 1/fe).astype(np.single)
    N = len(trace)
    h5_file.close()
    return fe, time, N

matrix_GF(spectrum_axi, lon, lat, N, distance_s, conjugate=False)

Generates a synthetic seismogram (Green's Functions) matrix in frequency domain using the given lon, lat, N, path_file_axisem, distance_s, and optional conjugate flag. Returns the synthetic seismogram matrix.

Parameters:
  • spectrum_axi (ndarray) –

    synthetic seismogram in frequency domain

  • lon (ndarray) –

    longitude of the grid

  • lat (ndarray) –

    latitude of the grid

  • N (int) –

    number of samples

  • distance_s (ndarray) –

    distance matrix

  • conjugate (bool, default: False ) –

    conjugate flag

Returns:
  • synth( ndarray ) –

    synthetic seismogram

Source code in wmsan/synthetics.py
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
def matrix_GF(spectrum_axi, lon, lat, N, distance_s, conjugate = False):
    """Generates a synthetic seismogram (Green's Functions) matrix in frequency domain
    using the given lon, lat, N, path_file_axisem, distance_s, and optional conjugate flag.
    Returns the synthetic seismogram matrix.

    Args:
        spectrum_axi (numpy.ndarray): synthetic seismogram in frequency domain
        lon (numpy.ndarray): longitude of the grid
        lat (numpy.ndarray): latitude of the grid
        N (int): number of samples
        distance_s (numpy.ndarray): distance matrix
        conjugate (bool, optional): conjugate flag

    Returns:
        synth (numpy.ndarray): synthetic seismogram
    """
    S_synth = np.zeros((len(lon), len(lat), N//2)).astype(complex)
    distance_s = np.round(distance_s, decimals=1)
    min_dist, max_dist = np.min(distance_s.data), np.max(distance_s.data)
    distance = np.arange(min_dist, max_dist+0.1, 0.1)
    distance_synth = 0.1*np.arange(0, len(spectrum_axi), 1)
    for dist in distance:
        dist = np.round(dist, decimals=1)
        index = abs(distance_s.data - dist) < 0.09
        try:
            trace = spectrum_axi[np.squeeze(np.argmin(abs(distance_synth - dist))),0:N//2].astype(complex)
        except:
            raise
        if conjugate:
            trace = np.squeeze(np.conj(trace))
        else:
            trace = np.squeeze((trace))
        S_synth[index,:] = trace
    return S_synth

open_archive(h5_name='spectrum_archive_tapered.h5')

Open an AxiSEM .h5 archive in a 1D model given its path, and returns sampling frequency, time vector and trace.

Parameters:
  • h5_name (str, default: 'spectrum_archive_tapered.h5' ) –

    path of axisem .h5 archive

Returns:
  • fe( float ) –

    sampling frequency

  • freq( ndarray ) –

    frequency vector of the archive

  • distance( ndarray ) –

    distance vector of the archive

  • S( ndarray ) –

    synthetic spectra

Source code in wmsan/synthetics.py
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
def open_archive(h5_name = 'spectrum_archive_tapered.h5'):
    """Open an AxiSEM .h5 archive in a 1D model given its path,
    and returns sampling frequency, time vector and trace.

    Args:
        h5_name (str, optional): path of axisem .h5 archive

    Returns:
        fe (float): sampling frequency
        freq (numpy.ndarray): frequency vector of the archive
        distance (numpy.ndarray): distance vector of the archive
        S (numpy.ndarray): synthetic spectra   
    """

    h5_file = h5py.File(h5_name, 'r')
    S = h5_file['SPECTRUM'][:]
    distance = h5_file['distance'][:]
    freq = h5_file['frequency'][:]
    h5_file.close()
    fe = 2*np.max(freq)
    return fe, freq, distance, S

open_axisem(dist, path_file_axisem='../../data/NOISE_vertforce_dirac_0-ak135f_1.s_3600s.h5', comp='Z')

Reads an AxiSEM .h5 archive in a 1D model given its path and a distance, and returns sampling frequency, time vector and trace at the given distance.

Parameters:
  • path_file_axisem (str, default: '../../data/NOISE_vertforce_dirac_0-ak135f_1.s_3600s.h5' ) –

    path of axisem .h5 archive

  • dist (float) –

    distance of interest

Returns:
  • fe_iasp( float ) –

    sampling frequency

  • time_iasp( ndarray ) –

    time vector of the archive

  • trace_synth( ndarray ) –

    synthetic trace at the given distance.

Source code in wmsan/synthetics.py
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
def open_axisem(dist, path_file_axisem='../../data/NOISE_vertforce_dirac_0-ak135f_1.s_3600s.h5', comp='Z'):
    """Reads an AxiSEM .h5 archive in a 1D model given its path and a distance,
    and returns sampling frequency, time vector and trace at the given distance.

    Args:
        path_file_axisem (str, optional): path of axisem .h5 archive
        dist (float): distance of interest

    Returns:
        fe_iasp (float): sampling frequency 
        time_iasp (numpy.ndarray): time vector of the archive
        trace_synth (numpy.ndarray): synthetic trace at the given distance.
    """
    dist = np.round(dist, 1)
    try:
        h5_file = h5py.File(path_file_axisem)
        trace_synth = h5_file['L']['SYNTH%03d.00'%(dist*10)][comp][:].astype(np.single)
        h5_file.close()
    except:
        raise
        print('File not found', path_file_axisem, "Download the file from: https://zenodo.org/records/11126562 \n", "Save in ../data/")
        return None
    return trace_synth

open_model(path_file_WW3, N, fe, lon_slice=slice(-180, 180), lat_slice=slice(-78, 80))

Open WW3 model for ambient noise sources at a specific time and date. Returns the PSD of the given model in N^2.s with dimensions (dim_lon, dim_lat, 2*dim_freq+1).

Parameters:
  • path_file_WW3 (str) –

    Path of WW3 model archive in N.s^{1/2}.

  • date_vect (ndarray) –

    Date and time vector [YEAR, MONTH, DAY, HOUR].

  • N (int) –

    Length of the spectrum.

  • fe (float) –

    Sampling frequency.

  • lon_slice (slice, default: slice(-180, 180) ) –

    Slice of longitude to select.

  • lat_slice (slice, default: slice(-78, 80) ) –

    Slice of latitude to select.

Returns:
  • force_spectrum( DataArray ) –

    Hermitian PSD of the given model in N^2.s with dimensions (dim_lon, dim_lat, 2*dim_freq+1).

Source code in wmsan/synthetics.py
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
def open_model(path_file_WW3, N, fe, lon_slice=slice(-180, 180), lat_slice=slice(-78, 80)):
    """Open WW3 model for ambient noise sources at a specific time and date. 
    Returns the PSD of the given model in N^2.s with dimensions (dim_lon, dim_lat, 2*dim_freq+1).

    Args:
        path_file_WW3 (str): Path of WW3 model archive in N.s^{1/2}.
        date_vect (numpy.ndarray): Date and time vector [YEAR, MONTH, DAY, HOUR].
        N (int): Length of the spectrum.
        fe (float): Sampling frequency.
        lon_slice (slice, optional): Slice of longitude to select.
        lat_slice (slice, optional): Slice of latitude to select.

    Returns:
        force_spectrum (xarray.DataArray): Hermitian PSD of the given model in N^2.s with dimensions (dim_lon, dim_lat, 2*dim_freq+1).
    """

    ## Open WW3 model 
    ds = xr.open_dataset(path_file_WW3)
    if lon_slice.start > lon_slice.stop:
        ds = ds.assign_coords(longitude=((360 + (ds.longitude % 360)) % 360))
        ds = ds.roll(longitude=int(len(ds['longitude']) / 2),roll_coords=True)
        lon_slice = slice(((360 + (lon_slice.start % 360)) % 360), ((360 + (lon_slice.stop % 360)) % 360))
    ww3_data = ds.F_f.sel(longitude=lon_slice, latitude=lat_slice)
    ww3_data = ww3_data.dropna(dim='longitude', how='all').dropna(dim='latitude', how='all')
    del ds
    ww3_data = ww3_data.where(np.isfinite(ww3_data))

    ## Spectrum Output
    if N%2 == 0:
        lenght_spectrum = int(N)  # must be Hermitian
    else:
        lenght_spectrum = int(N-1)  # must be Hermitian
    frequency = np.squeeze(fftfreq(lenght_spectrum, 1/fe))

    ## Interpolate over frequency range
    force_0 = xr.DataArray(np.zeros((len(ww3_data.longitude), len(ww3_data.latitude), 1)), coords={'longitude':ww3_data.longitude, 'latitude': ww3_data.latitude, 'frequency': [0]})
    force_2 = xr.DataArray(np.zeros((len(ww3_data.longitude), len(ww3_data.latitude), 1)), coords={'longitude':ww3_data.longitude, 'latitude': ww3_data.latitude, 'frequency': [2.]})
    ww3_data = xr.concat([force_0, ww3_data, force_2], dim='frequency')
    force_spectrum = ww3_data.interp(frequency=frequency[np.logical_and(frequency>=0., frequency <= 2.)], method="linear", kwargs={"fill_value": 0.})
    del ww3_data
    return force_spectrum**2  # in N^2.s

open_spectrum_axisem(path_file_axisem='./spectrum_vertforce_iasp91_1.s_256c_3600.s.h5', comp='Z')

Reads an AxiSEM .h5 archive in a 1D model given its path and component, and returns sampling frequency, time vector and trace.

Parameters:
  • path_file_axisem (str, default: './spectrum_vertforce_iasp91_1.s_256c_3600.s.h5' ) –

    path of axisem .h5 archive

  • comp (float, default: 'Z' ) –

    component

Returns:
  • fe_iasp( float ) –

    sampling frequency

  • time_iasp( ndarray ) –

    time vector of the archive

  • dist_iasp( ndarray ) –

    distance vector of the archive

  • spectrum_synth( ndarray ) –

    synthetic spectra

Source code in wmsan/synthetics.py
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
def open_spectrum_axisem(path_file_axisem='./spectrum_vertforce_iasp91_1.s_256c_3600.s.h5', comp='Z'):
    """Reads an AxiSEM .h5 archive in a 1D model given its path and component,
    and returns sampling frequency, time vector and trace.

    Args:
        path_file_axisem (str, optional): path of axisem .h5 archive
        comp (float): component

    Returns:
        fe_iasp (float): sampling frequency 
        time_iasp (numpy.ndarray): time vector of the archive
        dist_iasp (numpy.ndarray): distance vector of the archive
        spectrum_synth (numpy.ndarray): synthetic spectra
    """

    h5_file = h5py.File(path_file_axisem, mode = 'r')
    fe_iasp = h5_file['_metadata']['fe'][()].astype(np.single)
    time_iasp = h5_file['_metadata']['time'][:].astype(np.single)
    freq_iasp = h5_file['_metadata']['freq'][:].astype(np.single)
    index_freq = np.squeeze(np.argwhere(np.logical_and(freq_iasp>=0, freq_iasp<=2.)))
    freq_iasp = freq_iasp[index_freq]
    dist_iasp = h5_file['_metadata']['dist'][()].astype(np.single)
    spectrum_synth = np.zeros((len(dist_iasp), len(freq_iasp))).astype(np.csingle)
    for i, distance in enumerate(dist_iasp):
        spectrum_synth[i,:] = h5_file['L']['SYNTH%03d.00'%(distance*10)][comp][index_freq].astype(np.csingle)
    h5_file.close() 
    spectrum_synth = xr.DataArray(spectrum_synth, coords={'distance':dist_iasp, 'frequency':freq_iasp})
    return fe_iasp, freq_iasp, time_iasp, dist_iasp, spectrum_synth

taper_axisem_archive(time, distance, archive_name='../../data/NOISE_vertforce_dirac_0-ak135f_1.s_3600s.h5', umin=2.5, umax=3.5, comp='Z')

Taper an AxiSEM .h5 archive in a 1D model given its path and distances as well as minimum and maximum Rayleigh wave velocity,and saves and returns the tapered archive.

Parameters:
  • time (ndarray) –

    time vector

  • distance (ndarray) –

    distance vector

  • archive_name (str, default: '../../data/NOISE_vertforce_dirac_0-ak135f_1.s_3600s.h5' ) –

    path of axisem .h5 archive, default='../../data/NOISE_vertforce_dirac_0-ak135f_1.s_3600s.h5'

  • umin (float, default: 2.5 ) –

    minimum Rayleigh wave velocity

  • umax (float, default: 3.5 ) –

    maximum Rayleigh wave velocity

Returns:
  • tapered_archive( ndarray ) –

    tapered archive

Source code in wmsan/synthetics.py
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
def taper_axisem_archive(time, distance, archive_name='../../data/NOISE_vertforce_dirac_0-ak135f_1.s_3600s.h5', umin = 2.5, umax = 3.5, comp='Z'):
    """Taper an AxiSEM .h5 archive in a 1D model given its path and distances as well as minimum and maximum Rayleigh wave velocity,and saves and returns the tapered archive.

    Args:
        time (numpy.ndarray): time vector
        distance (numpy.ndarray): distance vector
        archive_name (str, optional): path of axisem .h5 archive, default='../../data/NOISE_vertforce_dirac_0-ak135f_1.s_3600s.h5'
        umin (float, optional): minimum Rayleigh wave velocity
        umax (float, optional): maximum Rayleigh wave velocity

    Returns:
        tapered_archive (numpy.ndarray): tapered archive
    """
    R = radius_earth*1e-3  # Radius of the Earth in km
    dt = time[1] - time[0]
    fe = 1/dt
    tapered_archive = np.zeros((len(distance), len(time)))
    for i, dist in enumerate(distance):
        dist_in_km = dist*np.pi*R/180
        tmin = dist_in_km/umax
        tmax = dist_in_km/umin
        if tmax >= np.max(time):
            tmax = np.max(time)
        if tmin >= np.max(time):
            continue
        dt_width = tmax - tmin + 50
        ## Taper
        tukey = signal.windows.tukey(int(round(dt_width*fe)), alpha=0.1)
        dirac = np.zeros(len(time))
        index = np.argmin(np.abs(time - (tmax + tmin)//2))
        dirac[index] = 1
        taper = signal.fftconvolve(dirac, tukey, mode='same')
        W = open_axisem(dist, archive_name, comp=comp)
        tapered_archive[i, :] = W*taper
    ## Save tapered archive as h5 file
    h5_name_tapered = archive_name.replace('s.h5', '_tapered_%s.h5'%comp)
    h5_file = h5py.File(h5_name_tapered, 'w')
    h5_file.create_dataset('WAVEFORMS', data=tapered_archive)
    h5_file.create_dataset('time', data=time)
    h5_file.create_dataset('distance', data=distance)
    h5_file.close()
    return tapered_archive

taper_axisem_archive_body_waves(time, distance, archive_name='../../data/NOISE_vertforce_dirac_0-ak135f_1.s_3600s.h5', phase1='P', phase2='PP', model='ak135', comp='Z', **kwargs)

Taper an AxiSEM .h5 archive around two body wave phases in a 1D model given its path and a distance, and returns the tapered archive.

Parameters:
  • time (ndarray) –

    time vector.

  • distance (ndarray) –

    distance vector.

  • archive_name (str, default: '../../data/NOISE_vertforce_dirac_0-ak135f_1.s_3600s.h5' ) –

    path of axisem .h5 archive

  • phase1 (str, default: 'P' ) –

    first body wave phase.

  • phase2 (str, default: 'PP' ) –

    second body wave phase.

  • model (str, default: 'ak135' ) –

    model to compute arrival times with TauP.

Returns:
  • fe_iasp( float ) –

    sampling frequency.

  • time_iasp( ndarray ) –

    time vector of the archive.

  • trace_synth( ndarray ) –

    synthetic trace at the given distance.

Source code in wmsan/synthetics.py
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
def taper_axisem_archive_body_waves(time, distance, archive_name='../../data/NOISE_vertforce_dirac_0-ak135f_1.s_3600s.h5', phase1 = 'P', phase2 = 'PP', model='ak135', comp='Z', **kwargs):
    """Taper an AxiSEM .h5 archive around two body wave phases in a 1D model given its path and a distance,
    and returns the tapered archive.

    Args:
        time (numpy.ndarray): time vector.
        distance (numpy.ndarray): distance vector.
        archive_name (str, optional): path of axisem .h5 archive
        phase1 (str, optional): first body wave phase.
        phase2 (str, optional): second body wave phase.
        model (str, optional): model to compute arrival times with TauP.

    Returns:
        fe_iasp (float): sampling frequency.
        time_iasp (numpy.ndarray): time vector of the archive.
        trace_synth (numpy.ndarray): synthetic trace at the given distance.
    """
    dt = time[1] - time[0]
    fe = 1/dt
    tapered_archive = np.zeros((len(distance), len(time)))

    ## IASP travel times TauP
    model_1D = TauPyModel(model='%s'%model)
    dist = np.arange(0, 180.1, 0.1)
    for i, d in enumerate(dist):
        try:
            arr_phase1 = model_1D.get_travel_times(source_depth_in_km=0, distance_in_degree=d, phase_list=['%s'%phase1])
            t_phase1 = arr_phase1[0].time
        except:
            t_phase1 = np.nan

        try:    
            arr_phase2 = model_1D.get_travel_times(source_depth_in_km=0, distance_in_degree=d, phase_list=['%s'%phase2])
            t_phase2 = arr_phase2[0].time
        except:
            t_phase2 = np.nan
        # Window around TauP
        tukey_window = signal.windows.tukey(int(50*fe), alpha=0.3, sym=True)
        dirac = np.zeros(len(time))
        if t_phase1 >= 0:
            index = [int(t_phase1*fe), int(t_phase2*fe)]
        else:
            index = int(t_phase2*fe)
        dirac[index] = 1
        window = signal.fftconvolve(dirac, tukey_window, mode='same')
        W = open_axisem(d, archive_name, comp=comp)
        tapered_archive[i, :] = W*window

    ## Save tapered archive as h5 file
    h5_name_tapered = archive_name.replace('s.h5', '_tapered_%s_%s_%s.h5'%(phase1, phase2, comp))
    h5_file = h5py.File(h5_name_tapered, 'w')
    h5_file.create_dataset('WAVEFORMS', data=tapered_archive)
    h5_file.create_dataset('time', data=time)
    h5_file.create_dataset('distance', data=distance)
    h5_file.close()
    return tapered_archive